
Future Generation Computer Systems 19 (2003) 291–302

Distributed policy-based management of measurement-based
traffic engineering: design and implementation

S. Van den Berghe∗, P. Van Heuven, J. Coppens, F. De Turck, P. Demeester
Department of Information Technology (INTEC), Ghent University, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Abstract

This article discusses an architecture using monitoring feedback as an assisting factor for delivering QoS on packet-based
networks. The handling of this feedback is done in an automated way, through the use of a policy-based management
architecture. For this, a formal model for describing data plane and measurement objects was translated into an XML-based
configuration language. On top of this, a proof-of-concept management architecture was developed and evaluated, using both
a modified network simulator and enhanced Linux prototype routers.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords:Traffic engineering; Monitoring; Policy-based management; Real-time management

1. Introduction

1.1. Overview

In a networking environment where applications
become more demanding in terms of performance
requirements, the ability to offer QoS-guaranteed ser-
vices is considered to be an important added value for
Internet Service Providers. On the other hand, because
the network performance model of aggregated packet
streams is hard to determine, it is difficult to provision
the network for every possible QoS requirement (as
expressed in a service level agreement). Admission
control algorithms, constraint-based routing algo-
rithms, etc. all use this limited model (e.g. assumed
residual bandwidth per link), and diagnostic moni-
toring of the actual network behaviour is needed to
check that their results are not too much impaired by
the uncertainties in the network performance model.
To avoid this, a bottom-up approach was developed

∗ Corresponding author.

based on a generic measurement infrastructure, aimed
at fulfilling the requirements as described in[9]. By
linking the measurement results with an automated
policy-driven (short timescale) management of tun-
nels in a multipath DiffServ over MPLS[6] environ-
ment, simulation results showed an adequate reaction
to short-term fluctuation in network performance.

This paper describes the next step in this research:
porting the architecture on a Linux-based testbed. For
this, the necessary extensions to the Linux kernel were
developed in our laboratory[8], to allow for the neces-
sary functionality (DiffServ over MPLS, dividing traf-
fic over multiple paths by mapping a set of classifiers
and monitoring).

To allow a flexible configuration, a description of
the capabilities of the extended router is translated
into a generic model for tunnel management. In ad-
dition, a proof-of-concept policy-based management
architecture is built, deliveringCommon Open Policy
Service(COPS)-like[3] paradigms through a CORBA
interface, and configuring the automated decision
process through XML-encoded commands. For other

0167-739X/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(02)00154-1



292 S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

information and operations, like topology analysis
and LSP-information retrieval, the software interacts
with corresponding signalling processes (an OSPF
routing daemon and RSVP-TE signalling daemon,
i.e. RSVP extended for end-to-end lsp configuration).
After the description of the node and management
software functionality and algorithms, some tests
performed on the testbed are discussed. Here, users
are simulated by a set of SmartBits-generated[12]
streams from different edges of the network, and an
analysis is made as to how the algorithm handles
these traffic fluctuations. The resulting charts are
analysed in terms of improved network performance,
and compared with the same setup in the simulations.

In the third section, a conclusion is drawn from these
practical experiences with a short-term automated
management system, and future extensions are looked
at. These include a generalization to policy-based tun-
nel management (i.e. application in overlay IP-in-IP
networks or secured VPN tunnels) and even in sample
service deployment without tunnelling mechanisms.

1.2. Related work

The use of monitoring to optimize network provi-
sioning in near real-time is under study within several
major research projects. The concept of a two-level
traffic engineering was used in the TEQUILA ap-
proach[13]. Here, a major part of the provisioning was
done based on specifications (SLSs) provided by the
users describing the requested service. In order to han-
dle fluctuations in the network (occurring due to the
probabilistic nature of the SLS specification and pro-
visioning algorithms), monitoring information is given
as an input to admission control, queue management
and tunnel management. The approach taken in this
paper simplifies this model (by restricting itself to tun-
nel management), and on the other hand enlarges the
role of this dynamic part of network management. The
concept of a unified measurement architecture and its
relationship with traffic engineering will also be inves-
tigated during a recently started IST project SCAMPI.

The concepts of policy-based management is also
being reflected in the work done in the IETF’s
Resource Allocation Protocol (RAP) working group.
Especially, the recent standardization of a feedback
framework that allows policy decisions to be taken
based on status reports from the network provides a

powerful framework for adaptive network manage-
ment. Publications on the subject of adaptive manage-
ment and traffic engineering were published at recent
PAM and Infocom conferences[1,4].

2. Architecture and algorithms

As mentioned in Section 1, a policy-based man-
agement approach was chosen to drive the short-term
traffic engineering. This implies that each network
element has aPolicy Enforcement Point(PEP), which
controls the functionality and executes operations on
the network element. The decision to perform an op-
eration is taken by a more centralPolicy Decision
Point (PDP), which will use information reported by
the PEPs. As opposed to the classicInternet Engineer-
ing Task Force(IETF) approach, the PDP is not cen-
tralized, but distributed over all the ingress nodes (to
take decisions for that ingress locally), and a PEP can
communicate with multiple PDPs (more specifically,
multiple PDPs can use reports from a single PEP in
their decision process), as depicted inFig. 1.

Creating new configurations, and performing oper-
ations on them, is done by instantiating and manipu-
lating objects (e.g. representing an LSP) in the PEPs.
Reporting can be done in two ways: solicited and un-
solicited. In the first mode, a report is immediately
sent as a response to an execution performed in a PEP.
This type of report can be sent from PEP to PDP or be-
tween PEPs (e.g. a PEP on the ingress of an LSP, may
request statistics from the egress PEP). Unsolicited re-
ports are sent asynchronously, and can only be going
from PEP to a PDP.

In order to describe the actions, a formal model is
made, which describes the different entities on which a
PEP can execute operations. In the current architecture
these can be divided in two major categories, namely
data plane and monitoring:

1. Data plane. At the data plane level, packets trav-
elling through the ingress node, encounter three
packet-processing steps. As the first step, the
classifier will map a packet onto an LSP, and de-
termine the per hop behaviour (PHB) it should
receive in the network. After this, the packet is en-
capsulated in an MPLS packet (in the LSP block)
and queued/scheduled on the output according to



S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302 293

Fig. 1. PDP–PEP–network relationship.

a given PHB. The role of the PDP decision will be
to manage the way classifiers are bound to LSPs.
In order to do so an additional semantic class, the
LSP group, is introduced in the model. An LSP
group keeps track of both the corresponding set of
the classifiers and LSPs for each PHB and for each

Fig. 2. Model data plane.

egress. Each LSP in the LSP group is also tagged
with a weightvariable, which is used in the algo-
rithm to keep track of the performance history of
the LSP (a higher weight means less performance
problems in the past). A more formal description
of this model is given inFig. 2.



294 S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

It is important to note that an LSP can belong to
multiple LSP groups. This ability allows the sup-
port of both L-LSPs (where the traffic of an LSP
is mapped to a single PHB, defined by the label)
and E-LSPs (where the mapping on the PHB is
not given by the label, but by another field—the
so-called exp-field—in the MPLS header). In the
second case, a single LSP can carry traffic of mul-
tiple service classes, so it belongs to multiple LSP
groups.

2. Monitoring. One of the authors worked in the IETF
on the specification of architectural requirements
for getting useful measurements for performing
traffic engineering, resulting in[9]. This document
describes both the methodology requirements and
the metric involved in measurement for traffic en-
gineering. Two main types of measurements have
been identified. The first one is based on keeping
statistics inside queues, forwarding engines, etc.
Getting the results offered by these counters is
called apassivemeasurement. The class offering
this is modelled as apassive reporter, which is
connected to a data plane object for getting the
actual counters (in the current implementation,
“octets received” counters are offered for classi-
fiers, LSP and PHB objects) (Fig. 3).

The second option is to perform a “ping”-like
measurement: inject packets into a network as a
test stream from a source to a destination, and anal-
yse the quality with which they were transported.
In this work (roughly based on the concepts in
[2]), within an active monitor the sender side will
be described as asynthetic source, and the receiver
anactive reporter. In order to configure the active
measurement, the reporter is installed by the des-
tination PEP, electing a new free destination port

Fig. 3. Model monitoring.

for the UDP test stream generated by the synthetic
source that is installed at the source PEP. The
triplet (source address, destination address and
destination UDP port) uniquely defines the test
session. Observe that in certain circumstances (e.g.
to actively monitor an LSP), the injected packets
need to be classified, in which case a classifier for
this triplet is installed. This configuration approach
replaces the control-plane signalling as defined in
[11].

Both active and passive reporters will submit
their results, at configuredread-out intervals, to an
analysing class, referred to asevaluators. Not only
does this allow for a flexible analysis, but it also
improves scalability of monitoring (by pushing
measurement aggregation and analysis as close to
the wire as possible).

The evaluator can analyse measurement results
in two operational modes (“greater or equal” for
upper threshold checking or “lower than” for lower
thresholds) and can operate in different ways. In
the current implementation, three different types
are supported. The first one, afixed classifier
will be triggered whenever de metric is bigger
(or smaller) then a configured value. The second
type, a linear classifier will be triggered accord-
ing to a probabilityp(x) for measurement result
x, upper borderu and lower borderl, as given
for upper threshold checking inEq. (1). Finally,
a pseudo-evaluator is also available which will
simply report every value (e.g. for diagnostics).

p(x) =




0, x ≤ l,

x − l

h − l
, h ≤ x < l,

1, x > h.

(1)



S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302 295

2.1. Operations

Given these building blocks, actions are defined
by XML-encoded strings that are transported using
a CORBA interface on the PDP and PEP. At the
PEP side, this interface offers the functionsinstall
for adding new actions (and of course also a function
to remove them) andexecutefor actually performing
them. Once installed, an action is assigned an object
identification by the PEP, for use in later reference. The
format of this identifier is<object routerId=r
objectId=o>. Other actions are described by link-
ing object identifiers together in action XML strings
(observe that router identifiers are the same for both
operands, since the operations are performed inside
the PEP):

<action oper=operation>
<object routerId=r objectId=o1>
<object routerId=r objectId=o2>

</action>

The most important actions used in the current work
are:

• lspgroup → add(lsp or classifier): adds a classifier
or lsp to an lsp group (and corresponding remove
operations).

• lspgroup → decr(lsp l): takes a classifier away
from l, decreases the weight ofl, and re-maps the
classifier to the lsp with the highest weight (and
different from l) in the LSP group.

• lspgroup → incr(lsp l): increases the weight
of l.

• object → show: used on any object, to immediately
report back configuration information.

• object → showstats: used on any object, to imme-
diately report back statistics information.

The increase/decrease functionality is used to manage
the amount of traffic on an LSP, and the two show
functions are for triggering solicited feedback. An ex-
ception to the action specification format is thecre-
ate operation for actually creating new objects of a
certain type (e.g. LSP, Classifier, etc.). The specifica-
tion describes object specific elements (e.g. path of the
LSP). The creation of objects, and operations on them
uses the same structure and both yield a new object
identifier:

<action oper=‘‘create’’ object=Object
Type>
Specification

</action>

The PDP side offers areport interface operation,
which in this case is only called if an evaluator is
triggered to send an unsolicited report. There is also
an interface operation to define rules, which declares
a binding between two object identifiers at the PDP
level: one to identify the rule triggering object (e.g. an
evaluator) and one to identify the action to be taken
(which can either be an operation on an existing object
or the creation of a new one):

<action oper=operation>
<trigger routerId=r objectId=o1>
<object routerId=r objectId=o2>

</action>

The top-level auxiliary file: tsvdbels2.au.

2.2. Algorithms

As an example of the possible applications of the
means described above, we first describe the algo-
rithm used in later experiments. Per LSP, two rules
and corresponding actions are defined. To each LSP,
two evaluators are attached: a fixed one for a lower
threshold and a linear one for upper threshold check-
ing, both using input from a passive monitor watch-
ing end-to-end tunnel loss (i.e. a passive reporter at
the ingress, which requests solicited usage report from
the egress, and calculates difference between sent and
received).

If for a given LSP the upper threshold evaluator is
triggered, its weight is decreased and one classifier is
swapped to another LSP, selected by the maximum
weight. Secondly, if the monitored loss of an LSP is
below the lower threshold, its weight is increased. In
this way, the weight represents how willing an LSP
is to take extra classifiers from other LSPs that have
become overloaded, and do nothing if everything on
the network seems all right. To summarise, the deci-
sion process is described by the algorithm given below
(using the operations defined previously), where the
LSPs are all part of the LSP groupG = {L1, . . . , Ln}.
Every measurement result is checked against evalua-
torseu(i) andel(i), both sending a report to the ingress



296 S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

PDP when triggered:

ωi = 0, ∀i ∈ G

start evaluatoreu(i) for lsp li , ∀i∈G
start evaluatorel(i) for lsp li , ∀i∈G
loop

if conditioneu(i) arrivedthen
G → decr(li)

else if conditionel(i) arrivedthen
G → incr(li)

end if
end loop

3. The enhanced Linux router

The algorithm below was deployed in both a simula-
tion and a Linux-based router testbed. The Linux ker-
nel provides an advanced traffic control to implement
DiffServ PHBs natively, and through an extension,
MPLS support. However, the combination of both was
not available. Furthermore, we needed a multi-field
classification before making a forwarding decision (in
order to drive the mapping of traffic on an LSP). Since
the classic DiffServ-on-Linux classifiers are in the out-
put part of the network stack, the firewalling code was
reused to achieve these goals. Together with the im-
plementation of RSVP-TE signalling, this extension
was published to the open source community.

To summarise, the enhanced Linux router as shown
in Fig. 4, uses the result of firewalling to put pack-
ets on the right LSP, with the correct outgoing label
and exp-field (in-segment). This is then used to select
the PHB throughout the network. After popping the

Fig. 4. Enhanced Linux router.

MPLS label at the egress (out-segment of the LSP), it
continues on a normal IP path. Passive monitors are
looking at traffic entering and leaving the LSP (using
a solicited report from the ingress to the egress).

In the current approach, a choice is made to keep
most of the complexity of the architecture at the edges
of the network. The core-PEP is limited to the man-
agement and reporting of its local traffic control, and
is a light-weight implementations of its much more
powerful cousins at the edge.

Operations in the core, like LSP establishment are
performed through signalling. This implies that PEPs
must communicate with the corresponding signalling
blocks, which in our case are an OSPF daemon (for
topology discovery) and an RSVP-TE signalling dae-
mon (for LSP control).

4. Results

4.1. Environment

To validate this architecture, the simulatorns-2 [10]
was modified and used. The PEP–PDP functionalities
were written outside the simulator (in order to be able
to reuse the same codebase for the testbed) and com-
munication between management and the simulator
was done using CORBA-calls. The topology and con-
figuration used is shown inFig. 5. This contains five
nodes (shown as 0 through 4) that actually constitute
the network under test. In this network the capacity
of all links, except for one, is big enough to oper-
ate loss-free with the traffic generated (all 100 Mb/s
links). The link (0,4) is configure to be the bottleneck



S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302 297

Fig. 5. Topology and setup used in this evaluation.

in the network, capable of handling 10 Mb/s. These
links are part of two distinctive LSPs: LSP 101 follow-
ing the shortest path (0–4–3) and LSP 102 following
(0–1–2–3). Two passive monitors are installed, exam-
ining the tunnel statistics related to these lsps.

In this configuration, traffic is generated by 20 ap-
plications. Corresponding to these applications, classi-
fiers are installed and added to an LSP group together
with the two LSPs. Traffic is generated by the appli-
cations during 15 s, followed by a 3 s off-period. With
each ‘traffic burst’ the rate per application is increased
In consecutive steps of 0.10 Mb/s, generating a total
traffic of between 11 and 15 Mb/s in steps of 2 Mb/s
(this is repeated at every test run, so for instance traf-
fic mapping decisions taken at 11 Mb/s arenot reset
after the burst). After each burst, the cumulative loss
of all the applications for that burst is evaluated. Ini-
tially, all traffic is mapped to the shortest path LSP.

A corresponding experiment was performed on a
testbed of Linux routers, equipped with the enhanced
Linux kernel as described earlier. A Smartbits 2000
system was used for traffic generation, generating the
same pattern as the traffic in the simulator (except
for the fact that no off-time was predefined, since the
Smartbits needs some time by itself to read-out results
and configure the hardware for the next burst).

4.2. Results

Not running any re-mapping algorithms, this leads
to the result shown inFigs. 6 and 7, using one-way
loss as the evaluated metric. This chart also contains

the result of the same test on a Linux testbed (the same
topology as the one used for the simulator). As a ref-
erence, the graph also shows the test without mapping
to an LSP on the testbed. This performance shows
that introducing MPLS deteroriates the performance
by only a small factor, and all three are close to the the-
oretical value (e.g. sending 15 Mb/s on a 10 Mb/s link,
theoretically yields a loss of 33.33, 32.9% in the plain
set-up—thanks to some spare room in the queues—
and 33.42% by using MPLS).

For each of the LSP, two evaluators were then cre-
ated with corresponding rules. This resulted in a con-
figuration in which the weight was increased if the
loss was smaller than 0.01% and was decreased (in-
cluding a re-mapping of traffic) according toEq. (1).
with upper and lower bounds of, respectively, 2 and
5% one-way loss. In the experiment, the read-out pe-
riod of the passive reporters providing the input was
twice per second.

A first striking observation is that the simulator
shows a much greater performance improvement than
with the real testbed experiments. There are several
reasons for this:

• When transporting measurement results to the eval-
uators, during the evaluation, during the decision
process, etc. the simulator is actually stopped, while
in the real testbed this happens asynchronously. As
a result, the decision to swap traffic has a much later
impact on the real testbed.

• Re-mapping traffic is disruptive on the testbed.
While mapping traffic from one LSP on another is



298 S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

Fig. 6. Reference performance.

done through modification in the simulator, in the
testbed this is done through a remove–add com-
bination of firewall rules. In between the removal
and addition, traffic is dropped before entering
the LSP. Hence, the end-to-end application-level
performance deteriorates, but the LSP-loss is not
touched.

• Generally speaking, the testbed implementation is
currently a proof-of-concept implementation to val-
idate functionality. It makes heavy use of CORBA-
calls, XML-parsing, debugging output, flat file input
and output, etc. As a result, the effect of the first
bullet point is even worse.

Fig. 7. Simulator and testbed performance improvement.

Despite these practical obstacles, the testbed results
clearly show a performance improvement (although it
is not as impressive as the simulation results) by re-
lying on measurement-based, short-term traffic engi-
neering.

A second conclusion can be drawn from the evalua-
tion with different read-out times for each rate (Fig. 8).
Here, in the simulation environment, the experiment
is done with a read-out period varying between four
times per second (so 0.25 s between each poll) and
every 2.5 s.

The improved performance with shorter inter-mea-
surement times is quite logic. It means more probes,



S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302 299

Fig. 8. Simulator and testbed performance improvement.

and as a result more opportunities to react and switch
traffic to a less loaded LSP. On the other hand, it of
course increases the burden of evaluating the delays.

5. Future applications

5.1. Generic model for tunnel management

While MPLS is currently being used for creating
alternative paths in the network, the approach is easily
implemented on top of other tunnelling mechanisms,

Fig. 9. Generalized model.

like Generic Routing Encapsulation (GRE[5]) or se-
cured VPN tunnels. Generally speaking, the model
shown inFig. 2 can be reused, with the LSP replaced
with a more generic tunnel representation. As an ex-
ample of this approach, a generic model (Fig. 9) is
currently under study, where the tunnel is abstracted
through the use ofvirtual interfaces, and where the
tunnel encapsulation of traffic is transparent for the
ingress classification. Mapping traffic to a tunnel is
then transformed to setting a route via an interface.
In Linux, virtual interfaces are supported for a num-
ber of mechanisms including MPLS, GRE and PPP.



300 S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

Furthermore, several advanced routing mechanisms
(like source routing and hashing-based multipath) are
available in the ‘off-the-shelf’ Linux kernels[7], and
can be used to map traffic on the interfaces.

For monitoring, the generic nature of this model
cannot be maintained so easily, due to the fact that not
all tunnels are bi-directional. In the case of MPLS for
instance, there is a virtual interface at the ingress, but
not at the egress. In this case, the transport of statistics
(e.g. the ‘octets received’) from egress to ingress can
be done either by the tunnel management block, or
through more low-level functions (e.g. by attaching
it as an explicit congestion notification to the regular
messages RSVP refresh messages).

5.2. Other algorithm inputs

In all the previous sections, unidirectional end-to-
end loss has been used as a metric to drive the traffic
mapping and the emphasis was on the management
of tunnels. However, other metrics and applications
can benefit from the given approach. For instance in
the network shown inFig. 10 in which a network
domain is depicted that peers with two other domains.
If this peering is (e.g. contractually) limited to a certain
bandwidth, the domain can use the residual bandwidth
at each of the peering points to direct the mapping
of traffic entering the network, destined to a subnet
advertised by both peers.

This mapping does not even require a tunnel mech-
anism to be used, but can be done by selecting differ-
ent ‘gateways’ at the domain ingress.

Fig. 10. Using residual bandwidth at peering points.

6. Conclusions

In this paper, a short-term traffic engineering was
presented, based on the policy-based management
paradigm. A formal model and corresponding con-
figuration language was described. This allowed
for a flexible proof-of-concept software architec-
ture to be built, both on top of a simulator and on
a Linux-based router testbed. In the latter case, the
necessary modification done on the Linux router was
described.

From the experiments it was shown that the algo-
rithm, although very simple in nature, was able to han-
dle some short-term fluctuations. On the other hand,
by comparing the results retrieved from simulation, to
those in real-life, it became clear that more has to be
done than just a proof-of-concept implementation in
order to achieve a more optimal performance enhance-
ment (although already a significant improvement was
made).

In a last section, it was shown that the concepts, al-
though now aimed at MPLS tunnels, could be applied
to a wider range of problems dealing with congestion
avoidance.

As presented, the current evaluated environment re-
lies only on the reactive use of monitoring feedback
in a local (ingress only) node. Since no information is
exchanged between these processes, the network-wide
stability is not guaranteed. As a result another level
of control needs to be introduced, which can perform
traffic engineering on a longer timescale, and which
uses—amongst other information—feedback from the
architecture presented to do so.

Acknowledgements

The authors would like to thank the participants
in the TEQUILA project for the interesting discus-
sions concerning the subject of two-level traffic en-
gineering. The authors would also like to thank Wai
Sum Lai, Blaine Christian and Richard W. Tibbs for
co-developing the basic monitoring ideas within the
IETF. Part of this work has been supported by the
Flemish Government through IWT scholarships and
by the Information Society Technologies (IST) Tequila
project, which is partially funded by the European
Commission.



S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302 301

References

[1] J.L. Alberi, T. Chen, S. Khurana, A. Mcintosh, M. Pucci, R.
Vaidyanathan, Using real-time measurements in support of
real-time network management, in: Proceedings of the Passive
and Active Monitoring Workshop, 2001.

[2] R. Cole, R. Dietz, C. Kalbfleisch, D. Romascanu, A
framework for synthetic sources for performance monitoring,
Internet Draft, Internet Engineering Task Force, Work in
Progress, 2001.

[3] D. Durham, et al., The COPS (Common Open Policy Service)
Protocol, RFC 2748, Internet Engineering Task Force, 2000.

[4] A. Elwalid, C. Jin, S. Low, I. Widjaja, MATE: MPLS
adaptive traffic engineering, in: Proceedings of the Infocom,
Anchorage, Alaska, April 2001.

[5] D. Farinacci, T. Li, S. Hanks, D. Meyer, P. Traina, Generic
routing encapsulation (GRE), RFC 2784, Internet Engineering
Task Force, March 2000.

[6] F. Le Faucheur, L. Wu, B. Davie, S. Davari, P. Vaananen,
R. Krishnan, P. Cheval, J. Heinanen, MPLS support of
differentiated services, Internet Draft, Internet Engineering
Task Force, Work in Progress, April 2001.

[7] B. Hubert, et al., Linux advanced routing and traffic con-
trol howto. http://www.Linuxdoc.org/HOWTO/Adv-Routing-
HOWTO.html.

[8] INTEC Ghent University, DiffServ Extensions for MPLS for
Linux. http://dsmpls.atlantis.rug.ac.be.

[9] W. Lai, B. Christian, R. Tibbs, S. Van den Berghe, A frame-
work for internet traffic engineering measurement, Internet
Draft, Internet Engineering Task Force, Work in Progress,
2001.

[10] Network Simulator (ns-2). The ns Manual. The VINT Project.
http://www.isi.edu/nsnam/ns/doc/index.html.

[11] S. Shalunov, B. Teitelbaum, M. Zekauskas, A one-way delay
measurement protocol, Internet Draft, Internet Engineering
Task Force, Work in Progress, 2001.

[12] Spirent, Smartbits 2000.http://www.netcomsystems.com.
[13] P. Trimintzios, I. Andrikopoulos, G. Pavlou, P. Flegkas, D.

Griffin, P. Georgatsos, D. Goderis, Y. T’Joens, L. Georgiadis,
C. Jacquenet, R. Egan, A management and control architecture
for providing IP differentiated services in MPLS-based
networks, IEEE Commun. Mag. 39 (5) (May 2001).

S. Van den Berghe graduated in Com-
puter Science at the University of Gent in
1999. In July 1999, he joined the Broad-
band Communications Networks Group
and he is preparing a PhD in January
2001, he was granted an IWT scholar-
ship. His research interests are mainly
the area of Quality of Service and Traf-
fic Engineering in IP. He is focusing
on measurement-based Traffic Engineer-

ing in a DiffServ/MPLS/MultiPath environment. He is active

in the IST TEQUILA project, development of DiffServ sup-
port for MPLS in the Linux community and has published,
next to several papers, an Internet Draft on the requirements
for measurement architectures for use in Traffic Engineered IP
Networks.

P. Van Heuven graduated in Computer
Science at the University of Gent in 1998.
His graduation thesis (“Computer busses
and caches in future processors”) exam-
ined the benefits of pre-fetching in fu-
ture processors by means of simulation.
In August 1998, he joined the Broadband
Communications Networks Group and he
is preparing a PhD. In January 1999, he
was granted an IWT scholarship. His re-

search interests include mainly the area of Quality of Service,
Traffic Engineering and resilience in IP and MPLS. He worked
on the ACTS Ist ACI project and is currently working on the
Ist TEQUILA project. He is also the maintainer of the open
source “RSVP-TE daemon for DiffServ over MPLS under Linux”
project.

J. Coppens joined the IBCN research
group in 2001 after studying computer
science at Ghent University. He special-
izes in (Linux) Traffic Control mecha-
nisms and is responsible for the Linux
part of a generic adaptation layer (GAL),
an abstraction layer for different router
platforms, in the IST Tequila project. His
research interests are Quality of Service,
Traffic Engineering, network monitoring

and distributed computing. While doing a PhD on monitoring in
Content Distribution Networks, he is currently active in the IST
Scampi project.

F. De Turck received his MSc degree in
Electronic Engineering from the Ghent
University, Belgium in June 1997. In May
2002, he obtained the PhD degree in Elec-
tronic Engineering from the same uni-
versity. From October 1997 to Septem-
ber 2001, Filip De Turck was research
assistant with the Fund for Scientific Re-
search Flanders, Belgium (FWO-V). At
the moment, he is affiliated with the De-

partment of Information Technology of the Ghent University as
a post-doctoral researcher of the FWO-V. His research interests
include scalable software architectures for telecommunication net-
work and service management, performance evaluation and opti-
mization of routing, admission control and traffic management in
telecommunication systems.

http://www.Linuxdoc.org/HOWTO/Adv-Routing-HOWTO.html
http://dsmpls.atlantis.rug.ac.be
http://www.isi.edu/nsnam/ns/doc/index.html
http://www.netcomsystems.com
http://www.Linuxdoc.org/HOWTO/Adv-Routing-HOWTO.html


302 S. Van den Berghe et al. / Future Generation Computer Systems 19 (2003) 291–302

P. Demeester received his PhD degree
from the University of Gent at the De-
partment of Information Technology (IN-
TEC) in 1988. He became professor at the
University of Gent where he is teaching
telecommunication networks and where
he is responsible for the IBCN research
group. He is senior member of IEEE and
he was or is member of several techni-
cal program committees. He was involved

in about 15 European ESPRIT, RACE and ACTS projects. He
was co-editor of two special issues of the IEEE Communications

Magazine: “Optical Networks Research in Europe, 1997” and “Sur-
vivable Communication Networks, 1999”. He was chairman of the
First International Workshop on the design of Reliable Commu-
nication Networks (DRCN98) and he is member of the editorial
board of the journals: “OPTICAL NETWORKS MAGAZINE” and
“JOURNAL PHOTONIC NETWORK COMMUNICATIONS”. He
has published over 300 articles and papers in the field of op-
toelectronics and broadband networks. His current interests are
related to broadband communication networks (IP, ATM, SDH,
WDM, access) and include network planning, network and ser-
vice management, telecommunications software, inter-networking,
etc.


	Distributed policy-based management of measurement-based traffic engineering: design and implementation
	Introduction
	Overview
	Related work

	Architecture and algorithms
	Operations
	Algorithms

	The enhanced Linux router
	Results
	Environment
	Results

	Future applications
	Generic model for tunnel management
	Other algorithm inputs

	Conclusions
	Acknowledgements
	References


